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LETTER TO THE EDITOR 

A simple algorithm for the calculation of moments of the 
density of states in a one-dimensional random binary alloy 

Ricardo Ramirezt'F and Miguel OrszagD 
t Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA 
§ Instituto de Fisica, Universidad Catolica, Casilla 114-D, Santiago, Chile 

Received 9 February 1981 

Abstract. A simple practical procedure is described for the calculation of moments of the 
density of states of 1D random binary systems obeying tight-binding-type Hamiltonians. 
Short-order correlation effects are included. The procedcre allows, in principle, the 
calculation of moments up to an arbitrary order. Explicit results for the 13 first moments are 
presented. 

In the last few years many applications of the tight-binding approximation in the 
moment method problem have been made with regard to the study of the electronic 
structure of crystals and alloys (Gaspard and Cyrot-Lackmann 1973, Wheeler et a1 
1974, Corcoran and Langhoff 1977, Lopez et a1 1974). This method is an important 
tool in the study of the local density of states, and provides a powerful procedure for the 
estimation of integrals of the density of states. This is especially important in problems 
with substitutional disorder where no information other than the Hamiltonian and the 
geometrical structure is available (Yndurain and Yndurain 1975, Trias et a1 1979). 

In this work an algorithm is described for the calculation of the moments of the 
density of state of a one-dimensional binary random alloy with short-order correlations. 
This method allows the computation of the moments up to any order. However, 
computer numerical accuracy limitations may arise in actual practice. 

We consider a one-dimensional alloy characterised by the Hamiltonian 

where .si = E A  or E~ in a proportion given by x = NB/(NA +NB), the second sum is over 
nearest-neighbour positions only and T is independent of the indices i and j .  

It is well known that the nth moment of the density of states is given by 

Any given term in this summation can be related to a one-dimensional walk or path, 
which starts at the lattice site s, goes through a number of neighbouring lattice sites and 
returns to s. At this point we can think of a graph, which in this case is precisely defined 
by the extreme vertices of the path. This graph can be travelled in many different ways 
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(i.e. walks), each one corresponding to different terms in (2). Now the factor (AlXIA') 
takes the value if A = A '  or T if A # A'.  In the former case we have a 'stop' at lattice 
site A and in the latter case we have a 'step' from A to A ' .  

In a given configuration, a path with q steps will produce a factor Tq, and each of the 
remaining n-g stops gives rise to two possible factors, or eB. Hence we may write 

where Z p  denotes a summation over all possible paths p compatible with the value of n. 
The value of q depends on the path p and t ( p )  is the number of stops at atoms of type A 
on a given path. 

In order to proceed further we classify the paths according to the graph g travelled 
by the path p .  Then we have to compute the number of paths, with q and t fixed, in a 
given graph g. This number will be denoted by C,(g, t )  and will implicitly depend also 
on n, q and the number of A and B atoms encountered in the path p .  However, since we 
are concerned with random alloys only, we have to take an equal weight average over all 
possible configurations and use the number 

instead. Therefore we may write 

The problem has thus been reduced to finding the numbers C(g,  t, x). From now on 
we set = 0; hence only those terms for which t = 0 remain in (4). pn with E A  # 0 can 
be easily obtained from the moments with = 0. Now consider a given graph. The 
vertex s at the origin will be denoted by the number 0 and the remaining vertices by 
integer numbers. The maximum value of this integer is M1 2 0 and the minimum value 
M2< 0. Thus the pair (Ml, M2)  defines the graph uniquely. This graph has L = 
M I  - M2 + 1 vertices and L - 1 branches. 

For a walk of q steps, each vertex of the graph is in general visited more than once. 
The number of times a path passes through a vertex j is called the number of stations lj in 
this vertex. A given path defines the set { l j }  in a graph in a unique way, but the reciprocal 
statement is not true and we have to know the number of possible paths in a graph for 
fixed { l j } .  This number is denoted by W({l j } )  and its calculation is performed below. 

Let C(g,  x )  = C(g, t = 0, x). The contribution of graph g to pn corresponds to a path 
in which n - q stops occur at atoms of type B. If all these stops occur at the same vertex a 
factor x appears in C(g,  x), since this is the probability of finding a B-type atom at an 
arbitrary lattice site in a random binary alloy. By the same token, if all stops occur at 
two different vertices only, a factor x2 appears and so on. Therefore C(g, x) has the 
form 

K 
C(g,  x) = w,sfl,q + c C',"'Xk' 

k ' = l  

where W, = I; W({lj})  and K is the smallest integer of the pair (L, n -4). 
We now turn to the calculation of CF'. Consider a given vertex j of graph g ;  the 

contribution of this vertex is equal to the number of ways in which we can place n - q 
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stops in li different places, that is 

( n  - q + l j  - l ) !  
( n  - q ) ! ( f j  - l ) ! ’  

and hence 

( n - q + l j - l ) !  
(n  -q ) ! ( l j  - l ) ! ’  {li} j = l  

Cf) can be computed in a similar way by computing the number of ways we can 
place n - q stops in l j l  + li2 places and subtracting the cases where all stops are made at 
only one of the two vertices. Therefore 

These expressions can be easily generalised for any k ’ :  

where 02’) is the mth member of the set of numbers 

If short-order correlations are taken into account, the second powers of x appearing 
in equation ( 5 )  have to be replaced by xPii where Pii is the probability of finding an atom 
B at site j if an atom B is at site i. Then C f ’ x 2  has to be replaced by 

where 

( n  - 4  + l i  + lj - l ) !  
( n  - q)!(l i  + l j  - l ) ! ’  

p. .  = ( n  - q + l i  - 1 )  ! 
( n  -q)!(l j  - l)! I’ ai = and 

Higher-order terms are replaced by similar expressions, i.e. 

.4c‘4’ 
g c ( S i i k m - Y i j k - Y i m k - Y m i k - Y i i m + P i i + P i k + P i m + P i k + p i m + P k m  

( l p }  ijkm 

-ai - a j - a k  - a m ) p i j k m w ( { l p } ) ,  ( 1 1 )  
respectively, where 

( n  -4  f li + l j  + l k  + 1, - I ) !  
(n  -q ) ! ( l j  + l j  + l k  -k f m  - I ) ! *  

6.. = ( n  - 4 + l i  + l j  + l k  - I)! 
( n - q ) ! ( l i + / j + l k - l ) !  Yi jk  = and rlkm 

By an obvious generalisation of these expressions we may write higher-order terms. 
The multiple-site correlation probabilities can be approximated by a sum of 

products of two-site correlation probabilities for instance, P i j k  is replaced by f ( P i j P i k  + 
PjiPjk + P k j P k j ) .  
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Now we consider the problem of determining W({lj}) ,  i.e. the number of paths in a 
given graph g defined by the numbers (M1, M2), for which the number of stations at 
each vertex, i.e. the set { l j } ,  is known. In order to proceed, we suppose that the number 
of steps between states 0 and 1 is known. We call this number s1 and, as will be seen 
later, it is wholly determined by the set { l j } .  Initially, we have no other step in the whole 
graph. The initial number of stations at vertex 0 is denoted by Zo and at vertex 1 by Z1. 
Notice that s1 = 2Z1 and Zo = ZI  + 1. In order to form one path in the graph we proceed 
as follows: we take one station at vertex 1, then split this station into two stations and 
insert 2e steps between these two stations and vertex 2 (see figure 1). In this way we add 
e stations at vertex 2 and e stations at vertex 1. We then treat the remaining stations at 
vertex 1 in a similar way and find ll = Z1 + Z2.  The same procedure can be used to reach 
vertices 3 ,4 ,  etc, up to vertex N, and we find the set of equations 

l j  = zj + z j + 1 ,  

MI 
I 
I 
I 
I 

2 

lhq 
I zo 

O 1  

I 
I 
I 

M2 

1 1 1' 

Figure 1. Illustration of the insertion technique used to find the value of W({ij}). See the 
text for details. 

By proceeding in the same way 'downwards' up to vertex M, we find 

l j  = zj +zj-1, j = 0 , - 1 , - 2 , . .  . , M 2 + 1 ;  lM2 = ZM2.  (13) 

The solution of (9) and (10) is 
M I - i  

q = o  
zj = 1 (-l)qlj+q 

q =o 

One can easily show that the 
M .  

for j > 0, 

for j 5 0. (14) 

set { l j }  satisfies the following constraints: 
M l  

1 (-1)j-Ilj = 1. (15) 
j=M2 
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In the procedure described above we may insert Zi+l stations in the Zi original 
stations in 

(Zi +zi+1- l)!/Z{!(Zi+I - l)! 
different ways, from which we may obtain 

M 

~ ( { l j } )  = [z,!(z~ - 1) ! / ( 2 ~ 0  - 1) !I (zj + zj+l- 1) !/[zj+l !(zj - 1) !I. (16) 
j=M2 

Table 1. 

p o = l  p l = x G  p2=2T2+xG2 p3=6xGT2+xG3 

p4 = 6T4 +4[2 +P(l)]xGZTZ + xG4 

p6 = 20T6+ [30+ 42P(1) + 18P(2)]xG2T4 +6[2 + 3P(l)]xG4T2 +xG6 

p7 = 140xGT6+{70 + 112P(1) + 14P(2) +Y[P(l)P(l)  +2P(1)P(2)]}xG3T4 + 14[1+ 2P(l)]xGSTZ + xG' 

&g =70Ts+[256+232P(1)+64P(2)+8P(3)]xGZT6+{96+244P(1)+24P(2) 

p 5 = 3 0 x G T 4 + 1 0 [ 1 + P ( 1 ) ] x G 3 T 2 + ~ G 5  

+$[P(l)P(l) +2P(1)P(2)]}xG4T4+8[2+5P(l)]xG6T2+xGg 
p9 =630xGT8+[420+846(1)+ 180P(2)+ 18P(3)+60P(l)P(l)+ 132P(l)P(2) 

+ 12P(l)P(3) + 12P(2)P(3)]xG3T6 

+{126 +450P(1) + 36P(2) + y [ P ( l ) P ( l )  +2P(1)P(2)]}xGsT4 

+ 18[1 +3P(l)]xG7Tz+xG9 

p 10 = 252 TIo + [ I280 + 1300P( 1) + 460P(2) + 1 OOP(3) + 1 OP(4)]xG2 T8 + I640 + 2 130P( 1) 

+ 360P(2) + 30P(3) 

+Y[43P(l)P(1) +93P(l)P(2) +7P(l)P(3)+7P(2)P(3)] 

+ 20P( 1)P(l)P(2) + 20P(1)P(2)P(3)}xG4T6 

+[160+750P(l) +50P(2)+ lOOP(l)P(l) 

+200P(1)P(2)]xG6T4+[20+70P(l)]xG8T2+xG'o 
pll = 2772xGT10+22{105 +244P(1)+68P(2)+ 12P(3)+P(4)+&68P(l)P(l)  + 16OP(l)P(2)+26P(l)P(3) 

+ 2P(l)P(4) +P(2)P(2) +24P(2)P(3) + 2P(2)P(4) +2P(3)P(4)]}xG3T8+22{42 +204P(1) 

+ 28P(2) +2P(3) 

+ $1 18P(l)P(l)  + 252P(l)P(2) + 16P(l)P(3) + 16P(2)P(3)] + 5P(l)P(l)P(2) 

+5P(1)P(2)P(3)}xGsT6 

+22{9+53P(1)+3P(2)+?[P(l)P(l) +2P(1)P(2)]}xG7T4 

+ 22[1 +4P(l)]xG9T2 +xG" 

p12 = 924T'2+[6144+6744P(1)+2784P(2)+804P(3)+ 144P(4)+ ~ ~ P ( ~ ) ] X G ~ T ' ~  

+[3840+ 15180P(1) + 3390P(2) + 504P(3) + 36P(4) + 2744P(l)P(l)  

+ 628OP(l)P(2) + 848P(l)P(3) + 56P(l)P(4) + 28P(2)P(2) + 792P(2)P(3) + 56P(2)P(4) 

+ 56P(3)P(4) + 348P(l)P(l)P(2) + 372P(l)P(2)P(3) + 24P(l)P(2)P(4) + 24P(l)P(l)P(3) 

+ 24P(l)P(2)P(2) +24P(2)P(3)P(4) + 24P(1)P(3)P(4)]xG4Ts 

+[1280+8464P(l) +960P(2)+6OP(3)+208SP(l)P(1)+4416P(l)P(2) 

+ 24OP(l)P(3) +240P(2)P(3) + 366P(l)P(l)P(2) + 366P(1)P(2)P(3)]xG6T6 

+ [240 + 1722P(l) + 84P(2)+ 308P(1) + 616P(1)P(2)]xG8T4 + [24 + 1 0 8 P ( l ) ] ~ G ' ~ T ~  + xG" 
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A simple practical procedure to obtain the set {li} in a given graph (M1, M2) is as 
follows. Start with a path with a minimum number of steps, qmin. The possible sets { l j }  
are very simple in this instance, e.g. lM, = 1, lM2 = 1, lo = 3, 1, = 2, j # 0, M1,  M2. Take 
one of these sets and add unity to a pair of adjacent vertices, i.e. li -+ li + 1, 1, -+ 1, + 1, 
where i, j are nearest neighbours. This will ensure that the set {l,} satisfies the constraint 
(15). All sets { l j }  for q = qmin will be eventually obtained in this manner. By repeating 
the same procedure we may continue up to any value of q. 

Finally we present, in table 1, the first 13 moments calculated by this method, where 
we have written P ( k )  for the probability of finding an atom type B at site m *,k, if at site 
m an atom type B is found. The value of P ( k )  for k > 1 is related to P(l), through the 
formula (J Rossler 1979, unpublished) 

(17) 

where y = 1 -x,  Q ( k )  = 1 - P ( k ) ,  Q(l) = 1 -P(l). The diagonal element EB is denoted 
by G. 

1 - Q ( k ) / y  = (1 - Q ( l ) / k ) k  
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